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Abstract. Suitable complexification of the well known hyperbolic Rosen–Morse oscillator in one
dimension is shown to give the fourth (and last?) exactly solvable model which combines the shape
andPT invariance.

Review paper [1] emphasizes that a requirement of the so-called shape invariance (with respect
to the translation of a parameter) determines all the four known exactly solvable analytic
potentials in one dimension:

• the shifted harmonic oscillatorV [H ](x) = (µx − b)2,
• the Morse potentialV [M](x) = A2 + b2 exp(−2µx)− (2A +µ)b exp(−µx),
• the ‘scarf’V [S](x) = [B2 − A2 − µA + (2A +µ)B sinhµx]/ cosh2µx, and
• the Rosen–Morse (RM) wellV [RM] (x) = −A(A + µ)/ cosh2µx + 2C sinhµx/ coshµx

with C < A2.

An increasingly complicated parameter dependence of the respective spectra

E[H ]
n = µn +µ E[M]

n = E[S]
n = −(A− µn)2

E[RM]
n = −(A− µn)2 − C2/(A− µn)2 (1)

contributes to the popularity of the harmonicV [H ] . The most recent illustration of this not
quite deserved preference is offered by thePT -symmetric quantum mechanics [2–6]. One
of its first presentations by Bender and Boettcher [2] started from the illustrativeV [H ](x).
This potential becomesPT -symmetric (which, in essence, means thatV (−x) = [V (x)]∗) at
the purely imaginary parametersb. ThePT -symmetric version of the next modelV [M](x)

is more complicated but it is already also understood in fair detail [7]. In contrast, only the
first few remarks onV [S](x) did just appear in the letter [8], presenting itsPT -symmetrized
form as a supersymmetric partner of its real (and spatially symmetric, also known as the
modified or hyperbolic P̈oschl–Teller [9]) special case. Up to now, no news seem available
aboutV [RM] (x). Indeed, the trick of [8] does not apply as the spectrum would change with the
naivePT -symmetrizationC = ic wherec = real. The gap is to be filled by this letter.

As a preparatory step let us recollect that without any supersymmetric considerations [5]
the manifestlyPT -symmetric version of the ‘scarf’ potentials is obtained atB = ib with real
b 6= 0. Without any loss of generality we may fix the scaleµ = 1 and take the well known
Jacobi-polynomial wavefunction formulae, e.g., from table 4.1 of [1].Mutatis mutandiswe
get

ψ [S]
n (x) = in

coshA x
e−ib arctan(sinhx) P (−b−A−1/2,b−A−1/2)

n (i sinhx).
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ThesePT -symmetric solutions remain well behaved along the whole real line. They vanish
asymptotically and remain normalizable for all the non-negative integersn < A. The sample
solutions of [8] reappear here as special cases.

A step towards the new RM-type model

V [RM] (x) = −A(A + 1)

cosh2 x
+ 2ic

sinhx

coshx
(2)

must be made with more care. Indeed, the energy formula (1) changes its meaning since
we have to insert the negativeC2 = −c2 < 0. At the same time the analytically continued
wavefunctions of [1] preserve their explicit and transparent form

ψ [RM]
n (x) = 1

coshA−n x
e−icx/(A−n) P (A−n+ic/(A−n),A−n−ic/(A−n))

n (tanhx).

They exhibit an asymptotic decrease for all the same non-negative integersn < A as above.
Nevertheless, due to the asymmetryV [RM] (±∞) = ±2ic we recover an apparent paradox. In
our RM potential which is asymptotically purely imaginary, bound states are formed even at
positive energies. Indeed, we haveE[RM]

n > 0 at all the integersn ∈ [ncrit, nmax] such that
ncrit > A − √c > 0 (with, of course,nmax < A). The phenomenon represents an exactly
solvable parallel to the empirically observed positivity of energies in thePT -symmetric model
V [ZJB](x) = −ix3 of Zinn-Justin and Bessis which is asymptotically purely imaginary as
well [3,10].

A transition to the more generalPT -symmetric power law forcesV [BB] (x) = (−ix)δ of
Bender and Boettcher [2] enables us to draw still one more parallel. Indeed, the (numerical
and semiclassical) analysis indicates a decay of the high-lying bound statesE[BB]

n = E[BB]
n (δ)

for decreasingδ < 2. Below a certainδcrit < 2 one is left with the mere single (i.e.,
ground) bound state. This is the last real level which disappears finally in Herbst’s limit:
E[BB]
n (δ) → +∞ for δ → 1+ [11]. In this context, the possible connection between the

asymptotic growth of|V (x)| and a decay of the high-lying bound states is given a different
form in our|V [RM] (±∞)| <∞ example. Even at a medium imaginary part (and a really small
real component) our model (2) still supports a single high-lying ground state at a (variably and
arbitrarily) large energyE[RM]

0 = c2/A2 +O(A2).
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