LETTER TO THE EDITOR

Shape invariant potentials with \mathcal{PT} symmetry

Miloslav Znojil

Theory Group, Nuclear Physics Institute AS CR, CS 250 68 Řež, Czech Republic

Received 1 December 1999

Abstract. Suitable complexification of the well known hyperbolic Rosen–Morse oscillator in one dimension is shown to give the fourth (and last?) exactly solvable model which combines the shape and \mathcal{PT} invariance.

Review paper [1] emphasizes that a requirement of the so-called shape invariance (with respect to the translation of a parameter) determines all the four known exactly solvable analytic potentials in one dimension:

- the shifted harmonic oscillator $V^{[H]}(x) = (\mu x b)^2$,
- the Morse potential $V^{[M]}(x) = A^2 + b^2 \exp(-2\mu x) (2A + \mu)b \exp(-\mu x)$,
- the 'scarf' $V^{[S]}(x) = [B^2 A^2 \mu A + (2A + \mu)B \sinh \mu x]/\cosh^2 \mu x$, and
- the Rosen–Morse (RM) well $V^{[RM]}(x) = -A(A + \mu)/\cosh^2 \mu x + 2C \sinh \mu x/\cosh \mu x$ with $C < A^2$.

An increasingly complicated parameter dependence of the respective spectra

$$E_n^{[H]} = \mu n + \mu \qquad E_n^{[M]} = E_n^{[S]} = -(A - \mu n)^2$$

$$E_n^{[RM]} = -(A - \mu n)^2 - C^2 / (A - \mu n)^2 \qquad (1)$$

contributes to the popularity of the harmonic $V^{[H]}$. The most recent illustration of this not quite deserved preference is offered by the \mathcal{PT} -symmetric quantum mechanics [2–6]. One of its first presentations by Bender and Boettcher [2] started from the illustrative $V^{[H]}(x)$. This potential becomes \mathcal{PT} -symmetric (which, in essence, means that $V(-x) = [V(x)]^*$) at the purely imaginary parameters *b*. The \mathcal{PT} -symmetric version of the next model $V^{[M]}(x)$ is more complicated but it is already also understood in fair detail [7]. In contrast, only the first few remarks on $V^{[S]}(x)$ did just appear in the letter [8], presenting its \mathcal{PT} -symmetrized form as a supersymmetric partner of its real (and spatially symmetric, also known as the modified or hyperbolic Pöschl–Teller [9]) special case. Up to now, no news seem available about $V^{[RM]}(x)$. Indeed, the trick of [8] does not apply as the spectrum would change with the naive \mathcal{PT} -symmetrization C = ic where c = real. The gap is to be filled by this letter.

As a preparatory step let us recollect that without any supersymmetric considerations [5] the manifestly \mathcal{PT} -symmetric version of the 'scarf' potentials is obtained at B = ib with real $b \neq 0$. Without any loss of generality we may fix the scale $\mu = 1$ and take the well known Jacobi-polynomial wavefunction formulae, e.g., from table 4.1 of [1]. *Mutatis mutandis* we get

$$\psi_n^{[S]}(x) = \frac{i^n}{\cosh^4 x} e^{-ib \arctan(\sinh x)} P_n^{(-b-A-1/2,b-A-1/2)}(i\sinh x).$$

0305-4470/00/070061+02\$30.00 © 2000 IOP Publishing Ltd

L61

L62 *Letter to the Editor*

These \mathcal{PT} -symmetric solutions remain well behaved along the whole real line. They vanish asymptotically and remain normalizable for all the non-negative integers n < A. The sample solutions of [8] reappear here as special cases.

A step towards the new RM-type model

$$V^{[\text{RM}]}(x) = -\frac{A(A+1)}{\cosh^2 x} + 2ic\frac{\sinh x}{\cosh x}$$
(2)

must be made with more care. Indeed, the energy formula (1) changes its meaning since we have to insert the negative $C^2 = -c^2 < 0$. At the same time the analytically continued wavefunctions of [1] preserve their explicit and transparent form

$$\psi_n^{[\text{RM}]}(x) = \frac{1}{\cosh^{A-n} x} e^{-icx/(A-n)} P_n^{(A-n+ic/(A-n),A-n-ic/(A-n))}(\tanh x).$$

They exhibit an asymptotic decrease for all the same non-negative integers n < A as above. Nevertheless, due to the asymmetry $V^{[\text{RM}]}(\pm\infty) = \pm 2ic$ we recover an apparent paradox. In our RM potential which is asymptotically purely imaginary, bound states are formed even at positive energies. Indeed, we have $E_n^{[\text{RM}]} > 0$ at all the integers $n \in [n_{\text{crit}}, n_{\text{max}}]$ such that $n_{\text{crit}} > A - \sqrt{c} \ge 0$ (with, of course, $n_{\text{max}} < A$). The phenomenon represents an exactly solvable parallel to the empirically observed positivity of energies in the \mathcal{PT} -symmetric model $V^{[\text{ZJB}]}(x) = -ix^3$ of Zinn-Justin and Bessis which is asymptotically purely imaginary as well [3, 10].

A transition to the more general \mathcal{PT} -symmetric power law forces $V^{[BB]}(x) = (-ix)^{\delta}$ of Bender and Boettcher [2] enables us to draw still one more parallel. Indeed, the (numerical and semiclassical) analysis indicates a decay of the high-lying bound states $E_n^{[BB]} = E_n^{[BB]}(\delta)$ for decreasing $\delta < 2$. Below a certain $\delta_{crit} < 2$ one is left with the mere single (i.e., ground) bound state. This is the last real level which disappears finally in Herbst's limit: $E_n^{[BB]}(\delta) \rightarrow +\infty$ for $\delta \rightarrow 1^+$ [11]. In this context, the possible connection between the asymptotic growth of |V(x)| and a decay of the high-lying bound states is given a different form in our $|V^{[RM]}(\pm\infty)| < \infty$ example. Even at a medium imaginary part (and a really small real component) our model (2) still supports a single high-lying ground state at a (variably and arbitrarily) large energy $E_0^{[RM]} = c^2/A^2 + \mathcal{O}(A^2)$.

References

- [1] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
- [2] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 24 5243
- [3] Calicetti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 75 51 Alvarez G 1995 J. Phys. A: Math. Gen. 27 4589 Delabaere E and Pham F 1998 Phys. Lett. A 250 25 Delabaere E and Pham F 1998 Phys. Lett. A 250 29
- [4] Bender C M, Boettcher S, Jones H F and Van Savage M 1999 J. Phys. A: Math. Gen. 32 6771 Znojil M 1999 J. Phys. A: Math. Gen. 32 7419 and references therein
- [5] Cannata F, Junker G and Trost J 1998 Phys. Lett. A 246 219 Andrianov A A, Cannata F, Dedonder J P and Ioffe M V 1999 Int. J. Mod. Phys. A 14 2675
- [6] Bender C M, Milton K A and Meisinger P N 1999 J. Math. Phys. 40 2201
- [7] Znojil M 1999 Phys. Lett. A 264 108
- (Znojil M 1999 *LANL preprint* quant-ph/9909003)
 [8] Bagchi B and Roychoudhury R 2000 *J. Phys. A: Math. Gen.* 33 L1
 (Bagchi B and Roychoudhury R 1999 *LANL preprint* quant-ph/9911104)
- [9] Flügge S 1971 Practical Quantum Mechanics vol 1 (Berlin: Springer) p 94
- [10] Bessis D 1992 Private communication
- [11] Herbst I 1979 Commun. Math. Phys. 64 279