LETTER TO THE EDITOR

Shape invariant potentials with $\mathcal{P} \mathcal{T}$ symmetry

Miloslav Znojil
Theory Group, Nuclear Physics Institute AS CR, CS 25068 Řež, Czech Republic

Received 1 December 1999

Abstract

Suitable complexification of the well known hyperbolic Rosen-Morse oscillator in one dimension is shown to give the fourth (and last?) exactly solvable model which combines the shape and $\mathcal{P} \mathcal{T}$ invariance.

Review paper [1] emphasizes that a requirement of the so-called shape invariance (with respect to the translation of a parameter) determines all the four known exactly solvable analytic potentials in one dimension:

- the shifted harmonic oscillator $V^{[H]}(x)=(\mu x-b)^{2}$,
- the Morse potential $V^{[M]}(x)=A^{2}+b^{2} \exp (-2 \mu x)-(2 A+\mu) b \exp (-\mu x)$,
- the 'scarf' $V^{[S]}(x)=\left[B^{2}-A^{2}-\mu A+(2 A+\mu) B \sinh \mu x\right] / \cosh ^{2} \mu x$, and
- the Rosen-Morse (RM) well $V^{[\mathrm{RM}]}(x)=-A(A+\mu) / \cosh ^{2} \mu x+2 C \sinh \mu x / \cosh \mu x$ with $C<A^{2}$.

An increasingly complicated parameter dependence of the respective spectra

$$
\begin{align*}
& E_{n}^{[H]}=\mu n+\mu \quad E_{n}^{[M]}=E_{n}^{[S]}=-(A-\mu n)^{2} \\
& E_{n}^{[R M]}=-(A-\mu n)^{2}-C^{2} /(A-\mu n)^{2} \tag{1}
\end{align*}
$$

contributes to the popularity of the harmonic $V^{[H]}$. The most recent illustration of this not quite deserved preference is offered by the $\mathcal{P} \mathcal{T}$-symmetric quantum mechanics [2-6]. One of its first presentations by Bender and Boettcher [2] started from the illustrative $V^{[H]}(x)$. This potential becomes $\mathcal{P} \mathcal{T}$-symmetric (which, in essence, means that $\left.V(-x)=[V(x)]^{*}\right)$ at the purely imaginary parameters b. The $\mathcal{P} \mathcal{T}$-symmetric version of the next model $V^{[M]}(x)$ is more complicated but it is already also understood in fair detail [7]. In contrast, only the first few remarks on $V^{[S]}(x)$ did just appear in the letter [8], presenting its $\mathcal{P} \mathcal{T}$-symmetrized form as a supersymmetric partner of its real (and spatially symmetric, also known as the modified or hyperbolic Pöschl-Teller [9]) special case. Up to now, no news seem available about $V^{[\mathrm{RM}]}(x)$. Indeed, the trick of [8] does not apply as the spectrum would change with the naive $\mathcal{P} \mathcal{T}$-symmetrization $C=\mathrm{i} c$ where $c=$ real. The gap is to be filled by this letter.

As a preparatory step let us recollect that without any supersymmetric considerations [5] the manifestly $\mathcal{P} \mathcal{T}$-symmetric version of the 'scarf' potentials is obtained at $B=\mathrm{i} b$ with real $b \neq 0$. Without any loss of generality we may fix the scale $\mu=1$ and take the well known Jacobi-polynomial wavefunction formulae, e.g., from table 4.1 of [1]. Mutatis mutandis we get

$$
\psi_{n}^{[S]}(x)=\frac{\mathrm{i}^{n}}{\cosh ^{A} x} \mathrm{e}^{-\mathrm{i} b \arctan (\sinh x)} P_{n}^{(-b-A-1 / 2, b-A-1 / 2)}(\mathrm{i} \sinh x)
$$

These $\mathcal{P} \mathcal{T}$-symmetric solutions remain well behaved along the whole real line. They vanish asymptotically and remain normalizable for all the non-negative integers $n<A$. The sample solutions of [8] reappear here as special cases.

A step towards the new RM-type model

$$
\begin{equation*}
V^{[\mathrm{RM}]}(x)=-\frac{A(A+1)}{\cosh ^{2} x}+2 \mathrm{i} c \frac{\sinh x}{\cosh x} \tag{2}
\end{equation*}
$$

must be made with more care. Indeed, the energy formula (1) changes its meaning since we have to insert the negative $C^{2}=-c^{2}<0$. At the same time the analytically continued wavefunctions of [1] preserve their explicit and transparent form

$$
\psi_{n}^{[\mathrm{RM}]}(x)=\frac{1}{\cosh ^{A-n} x} \mathrm{e}^{-\mathrm{i} c x /(A-n)} P_{n}^{(A-n+\mathrm{i} c /(A-n), A-n-\mathrm{i} c /(A-n))}(\tanh x)
$$

They exhibit an asymptotic decrease for all the same non-negative integers $n<A$ as above. Nevertheless, due to the asymmetry $V^{[R M]}(\pm \infty)= \pm 2 \mathrm{i}$ c we recover an apparent paradox. In our RM potential which is asymptotically purely imaginary, bound states are formed even at positive energies. Indeed, we have $E_{n}^{[R M]}>0$ at all the integers $n \in\left[n_{\text {crit }}, n_{\text {max }}\right]$ such that $n_{\text {crit }}>A-\sqrt{c} \geqslant 0$ (with, of course, $n_{\max }<A$). The phenomenon represents an exactly solvable parallel to the empirically observed positivity of energies in the $\mathcal{P} \mathcal{T}$-symmetric model $V^{[\mathrm{ZJB}]}(x)=-\mathrm{i} x^{3}$ of Zinn-Justin and Bessis which is asymptotically purely imaginary as well $[3,10]$.

A transition to the more general $\mathcal{P} \mathcal{T}$-symmetric power law forces $V^{[B B]}(x)=(-\mathrm{i} x)^{\delta}$ of Bender and Boettcher [2] enables us to draw still one more parallel. Indeed, the (numerical and semiclassical) analysis indicates a decay of the high-lying bound states $E_{n}^{[\mathrm{BB}]}=E_{n}^{[\mathrm{BB}]}(\delta)$ for decreasing $\delta<2$. Below a certain $\delta_{\text {crit }}<2$ one is left with the mere single (i.e., ground) bound state. This is the last real level which disappears finally in Herbst's limit: $E_{n}^{[\mathrm{BB}]}(\delta) \rightarrow+\infty$ for $\delta \rightarrow 1^{+}$[11]. In this context, the possible connection between the asymptotic growth of $|V(x)|$ and a decay of the high-lying bound states is given a different form in our $\left|V^{[\mathrm{RM}]}(\pm \infty)\right|<\infty$ example. Even at a medium imaginary part (and a really small real component) our model (2) still supports a single high-lying ground state at a (variably and arbitrarily) large energy $E_{0}^{[\mathrm{RM}]}=c^{2} / A^{2}+\mathcal{O}\left(A^{2}\right)$.

References

[1] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251267
[2] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 245243
[3] Calicetti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 7551 Alvarez G 1995 J. Phys. A: Math. Gen. 274589 Delabaere E and Pham F 1998 Phys. Lett. A 25025 Delabaere E and Pham F 1998 Phys. Lett. A 25029
[4] Bender C M, Boettcher S, Jones H F and Van Savage M 1999 J. Phys. A: Math. Gen. 326771 Znojil M 1999 J. Phys. A: Math. Gen. 327419 and references therein
[5] Cannata F, Junker G and Trost J 1998 Phys. Lett. A 246219
Andrianov A A, Cannata F, Dedonder J P and Ioffe M V 1999 Int. J. Mod. Phys. A 142675
[6] Bender C M, Milton K A and Meisinger P N 1999 J. Math. Phys. 402201
[7] Znojil M 1999 Phys. Lett. A 264108 (Znojil M 1999 LANL preprint quant-ph/9909003)
[8] Bagchi B and Roychoudhury R 2000 J. Phys. A: Math. Gen. 33 L1 (Bagchi B and Roychoudhury R 1999 LANL preprint quant-ph/9911104)
[9] Flügge S 1971 Practical Quantum Mechanics vol 1 (Berlin: Springer) p 94
[10] Bessis D 1992 Private communication
[11] Herbst I 1979 Commun. Math. Phys. 64279

